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f Chapitre 10 f

Continuité de fonction

I. Concept de continuité

1. Approche graphique

D’un point de vue graphique, on peut dire qu’une fonction est continue si sa courbe représentative se trace sans
lever le crayon.

Considérons la fonction f (x) = x2 définie sur R.
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La fonction f (x) = x2 est continue sur R.

Considérons la fonction h définie sur l’intervalle I =
[−1;1] par : {

h(x) = x +1 si x ∈ [−1;0[
h(x) = x si x ∈ [0;1]

−1 1.

−1

1

0

La fonction h n’est pas continue sur I .

Exemple 1:

2. Définition analytique

Le mathématicien allemand Karl Weierstrass(1815 ; 1897) apporte les premières définitions rigoureuses au concept
de limite et de continuité d’une fonction.

Soit une fonction f définie sur un intervalle I contenant un réel a.

• f est continue en a si lim
x→a

f (x) = f (a).

• f est continue sur I si f est continue en tout point de I .

Définition 1:

La fonction f est définie sur R par f (x) =


x +6 si x < 3
2 si x = 3

x2 si x > 3
Cette fonction est-elle continue en 3 ?

Pour étudier la continuité en a d’une fonction f , il faut :

1. Calculer la limite de f en a pour x < a :

Limite à gauche : lim
x→3
x<3

f (x) = lim
x→3
x<3

x +6 = 9

2. Calculer la limite de f en a pour x > a :

Limite à droite : lim
x→3
x>3

f (x) = lim
x→3
x>3

x2 = 9

3. On compare les valeurs obtenues à f (a) :

f (3) = 2. On a lim
x→a

x<3

f (x) = lim
x→a

x>3

f (x) 6= f (3) donc f n’est pas continue en 3.

Méthode 1 : Étude de la continuité en a
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Les flèches obliques d’un tableau de variation traduisent la continuité et la stricte monotonie de la fonction sur l’in-
tervalle considéré.

Remarque :

Une fonction dérivable sur un intervalle I est continue sur cet intervalle.

Propriété 1 :

Propriété à démontrer : « Une fonction dérivable sur un intervalle I est continue sur cet intervalle. »

On considère une fonction f définie et dérivable sur un intervalle I . Soient x et a deux réels appartenant à I .

Pour tout x 6= a, on a f (x)− f (a) = f (x)− f (a)

x −a
× (x −a).

Or lim
x→a

(x −a) = 0 et, puisque f est dérivable en a, lim
x→a

f (x)− f (a)

x −a
= f ′(a).

Ainsi lim
x→a

( f (x)− f (a)) = f ′(a)×0 = 0 donc lim
x→a

f (x) = f (a) et f est continue en a. �

Démonstration :

• Les fonctions de référence (les fonctions polynômes, valeur absolue, exponentielle, racine carrée, ...)
sont continues sur leur ensemble de définition.

• La somme et le produit de fonctions continues sur un intervalle I sont continues sur cet intervalle.

• Si f et g sont continues sur I et si g ne s’annule pas sur I , alors
f

g
est continue sur I .

Propriété 2 :

• Propriété à démontrer : « Les fonctions de référence sont continues sur leur ensemble de définition. »

Ces fonctions sont dérivables et donc continues sur R. �

• Propriété à démontrer : « La somme et le produit de fonctions continues sur un intervalle I sont continues sur
cet intervalle. »

Les opérations sur les limites permettent de démontrer la continuité sur un intervalle I des fonctions f + g et
f × g . �

• Propriété à démontrer : « Si f et g sont continues sur I et si g ne s’annule pas sur I , alors
f

g
est continue sur I . »

Les opérations sur les limites permettent de démontrer la continuité sur un intervalle I des fonctions
f

g
lorsque

g ne s’annule pas sur I . �

Démonstration :

II. Propriété des valeurs intermédiaires

1. Cas général

Si f est une fonction continue sur un intervalle [a;b] alors pour tout nombre réel k compris entre f (a) et f (b),
il existe au moins un nombre réel c compris entre a et b tel que f (c) = k.

Propriété 3 : Théorème des valeurs intermédiaires

Propriété à démontrer : « Théorème des valeurs intermédiaires »

On construit les suites (an) et (bn) telles que [an ;bn] ait une amplitude de plus en plus petite en utilisant le prin-

cipe de la dichotomie : si k ∈ [
f (a); f (b)

]
, alors k ∈

[
f (a); f

(
a +b

2

)]
ou k ∈

]
f

(
a +b

2

)
; f (b)

]
. On pose a0 = a et b0 = b.

• Si f

(
an +bn

2

)
> k, alors on pose an+1 = an et bn+1 = an +bn

2
.

Démonstration :
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• Sinon on pose an+1 = an +bn

2
et bn+1 = bn .

Montrons par récurrence sur n que, pour tout n ∈N, on a an 6 an+16 bn+16 bn , c’est-à-dire que la suite (an) est
croissante et que la suite (bn) est décroissante.

Initialisation : On a a0 = a, b0 = b et donc a06 b0.Si k 6 f (
a +b

2
) alors a1 = a0 et b1 = a0 +b0

2
.

On a donc a1> a0.

Comme a06 b0 alors b16
b0 +b0

2
= b0 et b1>

a0 +a0

2
= a0 = a1.

On a donc bien a06 a16 b16 b0.

Sinon, alors b1 = b0 et a1 = a0 +b0

2
. On a donc b16 b0. Comme a06 b0 alors a1>

a0 +a0

2
= a0 et a16

b0 +b0

2
= b0 =

b1.
On a donc bien a06 a16 b16 b0.
Donc la propriété est vraie au rang 0.

Hérédité : Supposons qu’à un rang n on ait an 6 an+16 bn+16 bn .

Si k 6 f (
an+1 +bn+1

2
) alors an+2 = an+1 et bn+2 = an+1 +bn+1

2
6 bn+1

Sinon an+2 = an+1 +bn+1

2
> an+1 et bn+2 = bn+1.

Dans les deux cas, on obtient que an+16 an+26 bn+26 bn+1.Il y a donc hérédité.
Conclusion : La suite (an) est croissante et la suite (bn) est décroissante.

Montrons que lim
n→+∞(bn −an) = 0

Pour tout n ∈N, bn+1 −an+1 = bn −an

2
pour toute valeur de k. La suite (bn −an) est donc une suite géométrique de

raison
1

2
et de premier terme b −a.

On a donc, pour tout entier naturel n, bn −an = b −a

2n d’où lim
n→+∞(bn −an) = 0.

Montrons que (an) et (bn) convergent vers une même limite α.
(an) est une suite croissante et (bn) est une suite décroissante. Puisque lim

n→+∞(bn −an) = 0, les deux suites convergent

vers la même limite (propriétés de deux suites convergentes).

On sait que pour tout n de N, on a, par construction des suites (an) et (bn), f (an)6 k 6 f (bn). f étant continue
sur I , on a lim

n→+∞ f (an) = f (α) et lim
n→+∞ f (bn) = f (α). On obtient donc k = f (α).

On vient de montrer que, pour un réel k quelconque appartenant à [ f (a); f (b)], il existe une valeurα telle que f (α) = k
donc l’équation f (x) = k admet au moins une solution sur l’intervalle [a;b]. �

Interprétation graphique :

Dans un repère , C est la courbe représentative de la fonction f .
Pour tout k ∈R compris entre f (a) et f (b), la droite ∆ d’équation
y = k coupe au moins une fois la courbe C en un point d’abscisse
c comprise entre a et b.

−2 −1 1 2

−2

−1

1

2

0

C f

B∆A C

xA xB xCa b

f (a)

f (b)

2. Cas des fonctions strictement monotones

Si f est une fonction continue et strictement monotone sur un intervalle [a;b] alors pour tout nombre réel k
compris entre f (a) et f (b), il existe un unique nombre réel c compris entre a et b tel que f (c) = k.

Propriété 4 : Théorème de la valeur intermédiaire

Propriété à démontrer : « Théorème de la valeur intermédiaire ».

Existence : Comme f est continue et strictement monotone sur I = [a;b], d’après le théorème des valeurs inter-
médiaires, pour tout k compris entre f (a) et f (b), l’équation f (x) = k admet au moins une solution dans I .

Démonstration :
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Unicité : Supposons qu’il existe plus d’une solution sur I à l’équation f (x) = k. Dans ce cas, il existe α et β dans I
avec α 6= β tels que f (α) = f (β) = k. Nous allons montrer que, en supposant ceci, on arrive à une contradiction dans
tous les cas de figure.
Considérons le cas où f est strictement croissante pour commencer.
Si α< β, alors f (α) < f (β) ce qui est en contradiction avec l’hypothèse f (α) = f (β) = k. Si α> β, alors f (α) > f (β) ce
qui est encore en contradiction avec l’hypothèse f (α) = f (β) = k.
On raisonne de la même façon pour le cas où f est strictement décroissante.
On conclut qu’il ne peut pas exister plus d’une solution à l’équation f (x) = k sur I et que la solution identifiée est
donc unique.

Soit f la fonction définie sur R par f (x) = x3 −3x2 −1. Quel est le nombre de solutions de l’équation f (x) = 4 sur R?

1. On détermine f ′ et son signe : Pour tout x ∈R, f ′(x) = 3x2 −6x = 3x(x −2).

2. On dresse le tableau de variation de f .

x

f ′(x)

f

−∞ 0 2 +∞

+ 0 − 0 +

−∞−∞

11

−5−5

+∞+∞

3. On se sert des extremums pour localiser les intervalles ou peuvent se trouver les solutions, et on applique le
théorème de la valeur intermédiaire sur ces intervalles :

• Sur ]−∞;2], le maximum de f vaut −1 donc f (x) = 4 n’a pas de solution sur cet intervalle.

• Sur [2;+∞[, f est continue et strictement croissante. 4 ∈ [−5;+∞[ donc, d’après le TVI, il existe un unique
α ∈ [2;+∞[ tel que f (α) = 4.

Donc l’équation f (x) = 4 n’admet qu’une solution sur R.

Méthode 2 :

III. Application aux suites

Soit f une fonction continue sur un intervalle I et (un) une suite d’éléments de I convergeant vers α ∈ I . On a
lim

n→+∞ f (un) = f (α).

Propriété 5 :

Propriété à démonter : « lim
n→+∞ f (un) = f (α) »

Soit f une fonction continue sur I , (un) une suite d’éléments de I et vn = f (un).
Pour tout intervalle ouvert J contenant b, comme lim

x→a
f (x) = b, il existe un intervalle ouvert J ′ contenant a tel que,

pour tout x appartenant à J ′, f (x) appartient à J . Comme lim
n→+∞un = a, un appartient à J ′ pour tout n assez grand.

Dans ce cas, pour tout n assez grand, vn = f (un) appartient à J .
On en déduit donc que lim

n→+∞vn = b.

Si f est continue sur I , lim
x→a

f (x) = f (a).

On a donc, lim
n→+∞ f (un) = lim

n→+∞vn = f (a) = f
(

lim
n→+∞un

)
. �

Démonstration :

27 janvier 2021 Lycée René Cassin Page 4/5



Terminale Spécialité Mathématiques Année 2020 - 2021

Si f est la fonction définie sur R par f (x) = (x +1)2 et (un) la suite définie, pour tout n ∈N, par un = 2+ 1

n +1
, alors

lim
n→+∞un = 2 donc lim

n→+∞ f (un) = f (2) = 9.

Exemple 2:

Soit f une fonction définie et continue sur un intervalle I dans lui-même et (un) la suite définie par un réel
i0 ∈ I et, pour tout n ∈N, un+1 = f (un).
Si (un) converge vers ` ∈ I , alors ` est solution de l’équation f (x) = x.

Propriété 6 : Théorème du point fixe

Propriété à démonter : « Si (un) converge vers ` ∈ I , alors ` est solution de l’équation f (x) = x »

On considère une fonction f définie et continue sur un intervalle I et à valeurs dans I .
Soit (un) une suite d’éléments de I convergeant vers un réel ` ∈ I .
On sait que lim

n→+∞un = lim
n→+∞un+1 = `.

Or, d’après la propriété précédente, lim
n→+∞un+1 = lim

n→+∞ f (un) = f
(

lim
n→+∞un

)
= f (`) d’où `= f (`) �

Démonstration :

Soit (un) la suite définie par u0 = 1 et, pour tout n ∈N, un+1 = 3

un +1
. On admet que (un) converge et que, pour tout

entier n, un ∈ [0;3]. Déterminer la limite de la suite (un).

1. Exprimer un+1 sous la forme f (un) : un+1 = f (un) avec f (x) = 3

x +1
sur I = [0;3].

2. Vérifier que f est continue sur I : f est continue sur I car inverse d’une fonction continue ne s’annulant pas
sur I .

3. Vérifier que les images par f appartiennent à I : Comme la fonction inverse est strictement décroissante sur

[0;+∞[, pour tout x ∈ I , f (x) ∈
[

3

4
;3

]
et

[
3

4
;3

]
⊂ I .

4. Résoudre l’équation f (x) = x :

f (x) = x
3

x +1
= x

3 = x(x +1)

x2 +x −3 = 0

On trouve x1 = −1+p
13

2
∈ I et x2 = −1−p

13

2
∉ I .

5. Appliquer le théorème du point fixe : D’après le théorème du point fixe, lim
n→+∞un = −1+p

13

2

Méthode 3 :
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